做电商,怎么能不会数据分析

标签:营销电商分析

访客:6782  发表于:2016-07-06 15:05:14

  1

  营销人不得不面对的行业趋势

  Holmes Report 2016年全球传播报告指出,无论在公关公司还是企业内部的公关部, 数据分析已经成为了继文案、策略、沟通的第四大技能 。

  希望这篇文章能培养大家的数据思维能力和意识,掌握一些开网店怎么找货源营销场景下的数据常识,了解数据分析的四步流程,相信对你以后的工作会有所帮助。

  2

  为什么要注重数据分析?

  为什么学会数据分析对我们来说很重要?

  有效避免拍脑袋,主观臆断;

  为决策提供支撑,使我们的结论更能说服人,说服客户;

  解释过去,预测未来。

  当谈到数据解决问题时,我们说:“如果你不能量化它,你就不能理解它,如果不理解就不能控制它,不能控制也就不能改变它”。数据无处不在,每个人都面临着如何有效地吸收、理解和利用数据的挑战。那些能够有效利用资源从数据中提炼信息、发现知识的人,最终往往成为各行各业的强者。

  3

  数据在营销领域的发展历程

  首先我们来回顾一下营销的发展史。营销主要经历了三个发展阶段。第一个是20世纪50年代初产生的4P理论,4P理论是伴随着营销组合的出现而出现的,以产品、价格、渠道和促销为核心。4P理论可以很好的帮我们了解一个公司整体的运营状况。后来到了20世纪末出现了4C,4C是以顾客、沟通、便利和成本为核心的,到了21世纪初,菲利普·科特勒又提出一个新的概念,就是我们已经属于营销3.0时代,一个“以人为中心”的时代。“人”的概念是指围绕在品牌周边的所有角色,既包括了品牌的真实用户和潜在客户,也包括了在品牌的传播当中非常重要的自媒体、KOL、粉丝等,当然也包括了品牌的从业者、员工和合作伙伴。

  对于这些“人”的分析洞察和数据挖掘,在方法论上也经历了三个发展阶段。第一个阶段是传统调研。传统调研是以调研问卷和焦点小组访问的形式为主的。主要特点是样本量比较少,受调研者的主观判断和经验所限,在信息上会有一些缺失。后来随着社交媒体的蓬勃发展出现了社会化聆听的方法。社会化聆听的一个主要特点就是数据量大,对于挖掘用户原生需求和内容是一个很好的渠道。而现在我们则步入了大数据时代。特点是数据海量,多样化的数据源,可以支持多维度多平台的纵深分析。

  4

  数据分析四步流程

  究竟数据分析这块应该怎么来做呢?

  简单来说分四步: 第一步明确目标,第二步数据获取,第三步数据洞察 ,最后结果输出。我想强调一下明确目标这步,因为我们在拿到客户的brief之后,首先需要去理解和转化brief的内容,然后再进行后续的工作。明确目标对大家而言不仅仅是需要去理解brief本身的内容,更重要的是要知道背后的background information。第二数据获取,就是告诉大家目前在营销行业对数据的一些常规分类方法。第三和第四步会结合具体的案例来讲。

  1

  明确目标

  好的问题使我们离答案更近一步,同理,坏的问题可以使我们离答案更远一步,甚至不止一步。来看一下有哪些值得我们去了解的背景信息。首先你要知道客户所处的行业以及行业趋势是什么,面临的主要问题和挑战是什么。第二是和你对接的客户属于企业当中的什么角色,是市场部还是公关部?还是其他部门?KPI是什么?第三,过去的一段时间你帮助这个客户解决过什么样的问题,以此试图了解他产生这次需求的动机。

  除了我们要知道需求的背景之外,我们自己还需要培养数字化的思维方法,说白了就是你需要对数据有敏感性。

  举个例子,比如说客户要做一轮传播,需要找一些自媒体。我们拿到这个需求之后,在脑子当中就需要有意识去想我可以获取什么样的数据,需要从什么方向和维度去结构化这些数据,以及最后想达到的效果是什么。比如说这个case,就需要知道我们要reach什么样的受众,这些受众有什么特点,以及我通过什么样的数据可以判断受众最关注的自媒体帐号是什么,最后还要思考筛选的机制大概是什么样的。这个过程要求大家的左脑和右脑同时运转,一边是发散性的思维,一边是结构化的逻辑思维过程。

  刚刚说的都是从自身出发的,再换一个角度来看一下从客户角度怎么看问题。客户的角色不同,他们对数据的理解以及价值的发现也是不一样的。比如说市场、销售、CRM部门,他们更多的可能是对用户画像,对用户细分更感兴趣;研究部门或者是产品部门对用户的口碑,用户的UGC内容更感兴趣,因为他们通常想要去了解用户对品牌、对活动、以及对产品和服务的真实反馈是什么;最后对于公关或者是媒介部门来说,更多的需要去了解媒介的情况:用什么媒体什么渠道可以获得最好的效果等等。

  2

  数据获取

  首先我们认识一下用户标识。用户标识也叫用户ID,相当于数据分析的一把钥匙。通过用户标识可以进行用户数据匹配和数据打通。目前平台碎片化和渠道碎片化,用户标识在不同平台和不同渠道上都是不一样的。目前业内采用比较多的方式,PC端是使用cookies,移动端使用手机唯一识别码,在苹果手机上称为IDMA,在安卓机上叫IMEI号,这个号是唯一不变的。不论你的手机有什么样的操作更新或者安装了什么APP都不影响设备号。所以可以通过这个设备号去精准地定位到我们的用户。对APP的识别有另外一个方法就是SDK。除了这些还有用户的其他身份,比如说用户的手机号,电子邮箱,社交ID,比如说微博号微信号,这些都是作为用户标识的方法。

  刚刚说了用户标识,接下来我们来看一下用户数据这块。用户数据的分类方法有很多种,一种方式可以从静态数据和动态数据两个概念来分。静态数据是指在一段时间内不会轻易发生改变的数据,动态数据是会实时改变的。我们对用户的分类大概可以分为自然特性、社会特性、偏好特性和消费特征。其中自然和社会特性数据是静态数据,偏好和消费特征是动态数据。

  除了用户数据另外还有渠道数据,包括信息的渠道和购买渠道。信息就是包括了社交媒体平台,新闻资讯平台的数据。购买就是指购买渠道的数据,比如电商、官网、卖场数据等。

  数据按照所有者和来源又可以分为两大块:一方面是我们说的一手数据,就是企业和品牌所拥有的数据。最典型的体现为CRM数据。另一方面是第三方数据,大部分的第三方数据都是开放和公开数据,当然也有一些数据交换和数据合作得到的加密数据。

  5

  数据在营销中的使用场景

  第三步数据洞察和第四步结果输出将结合案例给大家讲。在讲案例之前我们可以先来看一看,数据在整个营销当中,最经常会遇到的使用场景,基本所有的营销问题都可以归纳为三类,就是关于“Who、What、Where”的问题。Who可以理解为TA是谁,What就是去了解这些用户的原生内容,就是我们说的UGC(User Generated Content)。UGC口碑引申出来的就是对品牌、服务、产品的整体反馈。我们可以基于此为企业不同业务单元提供不一样的建议和策略。Where是通过哪些媒体渠道和触点,可以最好地reach到用户。

  WHO

  首先我们来看一下用户画像。到底什么是用户画像呢,其实说白了就是给用户打标签的过程和最后输出结论。我们现在对用户画像标签的体系架构无非就是这么几大类,包括 人口属性,社会属性,兴趣偏好、行为习惯和心理学属性 。那这么五大类的标签建完之后有什么意义呢?我们可以重点看一下上面的分析指标,他们体现了标签能够产生的价值。

评论(0)

您可以在评论框内@您的好友一起参与讨论!

<--script type="text/javascript">BAIDU_CLB_fillSlot("927898");